جواهر ستار التعليمية |
أهلا وسهلا بك زائرنا الكريم ، في منتديات جواهر ستار التعليميه المرجو منك أن تقوم بتسجـيل الدخول لتقوم بالمشاركة معنا. إن لم يكن لـديك حساب بعـد ، نتشرف بدعوتك لإنشائه بالتسجيل لديـنا . سنكون سعـداء جدا بانضمامك الي اسرة المنتدى مع تحيات الإدارة |
جواهر ستار التعليمية |
أهلا وسهلا بك زائرنا الكريم ، في منتديات جواهر ستار التعليميه المرجو منك أن تقوم بتسجـيل الدخول لتقوم بالمشاركة معنا. إن لم يكن لـديك حساب بعـد ، نتشرف بدعوتك لإنشائه بالتسجيل لديـنا . سنكون سعـداء جدا بانضمامك الي اسرة المنتدى مع تحيات الإدارة |
|
جواهر ستار التعليمية :: قسم للمناهج التعليم العربي |
الأربعاء 20 أغسطس - 0:40:02 | المشاركة رقم: | |||||||||||||||||||||||||||||||||||||||||||||||||||||||
Admin
| موضوع: احلى ملزمه فى math alg factorization احلى ملزمه فى math alg factorization [ltr] [/ltr] [ltr]1- Factorize by taking H.C.F [/ltr] [ltr] A] 6 x2y2 – 9 x3 y by identifying H.C.F [/ltr] [ltr] H.C.F is 3x2y [/ltr] [ltr] 3x2y ( 2 y – 3 x ) [/ltr] [ltr]B] 20a3b2 + 4a4b3-24ab3 ……………………………………[/ltr] [ltr] …………………………………………………………………………………………………[/ltr] [ltr] [/ltr] [ltr]2- Factorize the expression in the form [/ltr] [ltr]a X 2 + b X + c where a = 1 [/ltr] [ltr]when you are going to factorize any expression follow : ـ [/ltr] [ltr]1- arrange the expression descending according to the [/ltr] [ltr] power of X [/ltr] [ltr]2- is there a common factor between the terms or no [/ltr] [ltr]3- find two numbers their product is = c [/ltr] [ltr] And their sum = b [/ltr] [ltr] Find : [/ltr] [ltr] Two numbers their product is 20 and their sum is 9 [/ltr] [ltr] Two numbers their product is -24 and their sum is 5 [/ltr] [ltr] Two numbers their product is 12 and their sum is -8 [/ltr] [ltr] Two numbers their product is -15 and their sum is -14 [/ltr] [ltr]Example :[/ltr] [ltr] A] Factorize x2 - 5 x + 6 [/ltr] [ltr] ……………………………………………………………………………[/ltr] [ltr] B] Factorize x2 +11 x +10 [/ltr] [ltr] ……………………………………………………………………………[/ltr] [ltr] C] Factorize x2 - 7 x + 10 [/ltr] [ltr] ……………………………………………………………………………[/ltr] [ltr] D] Factorize y2 – 50 y - 51 [/ltr] [ltr] ……………………………………………………………………………[/ltr] [ltr] E] Factorize - x2 + 2 x + 63 [/ltr] [ltr]……………………………………………………………………………[/ltr] [ltr] [/ltr] [ltr] [/ltr] [ltr] [/ltr] [ltr] [/ltr] [ltr] [/ltr] [ltr]1] Factorize each of the following [/ltr] [ltr] a) x2 + 8 x + 15 …………………………………………………………………………………………[/ltr] [ltr] b) a2 – 9 a + 18 …………………………………………………………………………………………[/ltr] [ltr] c) a2- a - 30 …………………………………………………………………………………………[/ltr] [ltr] d) a2 + 30 a + 81 …………………………………………………………………………………………[/ltr] [ltr] e) y2 + 7 y + 1 2 …………………………………………………………………………………………[/ltr] [ltr]2] Factorize each of the following [/ltr] [ltr] 1) x2 + 5 xy + 6y2 ………………………………………………………………………[/ltr] [ltr] 2) y2 + 16 yx – 36 y2 ………………………………………………………………………[/ltr] [ltr] 3) a2 + 22 ab – 48 b2 ………………………………………………………………………[/ltr] [ltr] 4) n2 + 4 nm – 45 m2 ………………………………………………………………………[/ltr] [ltr] 5) x2 – 7 xy – 18 y2 ………………………………………………………………………[/ltr] [ltr] 6) x2 – 5xy - 24 y2 ……………………………………………………………………………[/ltr] [ltr]3] Factorize each of the following [/ltr] [ltr] 1) 15 a + a2 – 34 …………………………………………………………………………………[/ltr] [ltr] 2) -10 + x2 + 3x ……………………………………………………………………………[/ltr] [ltr] 3) 22 x - 7 5 + x2 ……………………………………………………………………………………[/ltr] [ltr] 4) x2 + 21 – 10 x ………………………………………………………………………………[/ltr] [ltr]4] Factorize each of the following[/ltr] [ltr] 1) 2 a2 + 28 a +96 ………………………………………………………………………………………… 2) 2x2 + 60 x + 162 …………………………………………………………………………[/ltr] [ltr] 3) x3 – 23 x2 + 60 x ………………………………………………………………………………[/ltr] [ltr] 4) 3x2 – 42 – 15 x …………………………………………………………………………………[/ltr] [ltr]5] Factorize each of the following[/ltr] [ltr] 1) x4 + 9 x2 – 36 …………………………………………………………………………………………[/ltr] [ltr] 2) x6 + 8x3y3 – 180 y6 …………………………………………………………………………………………[/ltr] [ltr] 3) a10 – 9a5b3 – 220 b6 ………………………………………………………………………………………[/ltr] [ltr]6] Find the positive integer of a which makes each of the following [/ltr] [ltr] Expressions factorizable [/ltr] [ltr] 1) x2 + 5x + a 2) x2 + a x - 2 [/ltr] [ltr] ………………………. ………………………..[/ltr] [ltr] 3) x2 + ax + 2 4) x2 – a x + 12 [/ltr] [ltr] ……………………… ……………………..[/ltr] [ltr] [/ltr] [ltr] [/ltr] [ltr] [/ltr] [ltr] [/ltr][ltr]Remark when you going to factorize any expression [/ltr] [ltr] 1] arrange the expression descendingly according to the power of x [/ltr] [ltr] 2] Factorize firstly by taking H.C.F if exist [/ltr] [ltr]And if the expression in the form of ax2 b x + c when a 1 [/ltr] [ltr] Example (1) [/ltr] [ltr] Factorize each of the following 3 x2 + 7 x - 6[/ltr] [ltr] The first term 3 x2 = 3x X x [/ltr] [ltr] The last term - 6 can be factorize to [/ltr] [ltr]-6 x 1 or -1 x 6 or 2 x -3 or -2 x 3 then we try by using the following arrows to get the correct factorization[/ltr] [ltr] [/ltr] [ltr] [/ltr] [ltr] [/ltr] [ltr] [/ltr] [ltr] [/ltr] [ltr]In first try [/ltr] [ltr]3x X -6 + x X 1 = -17x the middle term [/ltr] [ltr]In the second try [/ltr] [ltr] 3x X 6 + x X -1 = 17 x the middle term [/ltr] [ltr]In the third try [/ltr] [ltr] 3 x X - 3 + x X 2 = -7x the middle term [/ltr] [ltr]In the last try [/ltr] [ltr] 3 x X 3 + x X -2 = 7x = the middle term [/ltr] [ltr] 3 x2 + 7x – 6 = ( 3x – 2 ) ( x + 3 ) take care and follow the mister [/ltr] [ltr] [/ltr] [ltr]Exercises on factorization a trinomial with the form [/ltr] [ltr] ax2 b x + c when a 1 [/ltr] [ltr]1] factorize each of the following expressions [/ltr] [ltr] A] 2a2 + 5a + 2 [/ltr] [ltr] B] 2x2 -5x + 2 [/ltr] [ltr] C] 3x2 +5x – 12 [/ltr] [ltr] D] 4y2 + 5y -21 [/ltr] [ltr]2] factorize each of the following expressions[/ltr] [ltr] A] 6a2 + 5ab + b2 [/ltr] [ltr] B] 6a2 -19ab-7b2 [/ltr] [ltr] C] 25 m-10 + 15 m2 [/ltr] [ltr] D] 8x3-27x2 -20x[/ltr] [ltr] E] 6x3 -13 x2y +6xy2[/ltr] [ltr] F] 4x ( 3x +7y ) -5y2[/ltr] [ltr]Exercises from the school book [/ltr] [ltr] [/ltr] [ltr]1] Complete the missing terms[/ltr] [ltr] [/ltr] [ltr] A] 2 x2+7 x-6 = ( 3x - …… ) ( …… + …… ) [/ltr] [ltr] B] 2 x2 + x – 6 = ( …… + …… ) ( x - …… ) [/ltr] [ltr] C] 5 x2-2 x-7 = ( 5x - …… ) ( x + …… ) [/ltr] [ltr] D] 6 x2-11 x -10 = ( 2x - ……. ) ( …… + 2 )[/ltr] [ltr] E]2 x2 + 10 x + 8 = ( …… + 4 ) ( x + …… ) [/ltr] [ltr] [/ltr] [ltr]2] Factorize each of the following expressions[/ltr] [ltr] [/ltr] [ltr] A] 2 x2 + 3x + 1 B] 5z2-7z +2 [/ltr] [ltr] C] 5x2- 3x -3 D] 8a2+ 2a -3[/ltr] [ltr] E] 6x2 - 47xy - 63y2 F] 21x2y2 + 6x2y3- 15x2y4[/ltr] [ltr] G] 2y2+ 5y +3 H] 6x2-11x + 3[/ltr] [ltr] J] 5 a2-18 a +1 6 k] 2 m2- 9 m -5 [/ltr] [ltr] [/ltr] [ltr]3] a rectangle its area ( 2 x2 + 19 x + 35 ) cm2. Find its dimensions in terms of x then find its perimeter when x = 3 [/ltr] [ltr] [/ltr] [ltr]Factorization of a perfect square trinomial [/ltr] [ltr] [/ltr] [ltr]Each of the following expressions [/ltr][ltr] 4x2 - 12 x +9 , 25 y2 + 70 xy + 49 x2 [/ltr] [ltr] And L4 – 10 L2m + 25 m2 are called perfect square [/ltr] [ltr] [/ltr] [ltr]And we note that any expressions has :[/ltr] [ltr]1- each of the first term and the third term are perfect [/ltr] [ltr] square .[/ltr] [ltr]2- the middle term = 2 x [/ltr] [ltr] If the expression has the previous conditions is called [/ltr] [ltr]perfect square.[/ltr] [ltr] [/ltr][ltr]And the factorization of this expression in the form [/ltr] [ltr] ( ) 2[/ltr] [ltr] [/ltr] [ltr] The sign of the middle term [/ltr] [ltr] [/ltr] [ltr] [/ltr] [ltr] [/ltr] [ltr] [/ltr] [ltr] [/ltr] [ltr]Firstly as any expression we should [/ltr] [ltr]1) take the H.C.F of the expression if exist [/ltr] [ltr]2) arrange the terms of the expression desceningly [/ltr] [ltr] according to the power of any symbol . [/ltr] [ltr]1] Show which of the following expression is a perfect square [/ltr] [ltr] A] a2 + 9 B] a2 – ab + b2 [/ltr] [ltr] C] L2 – 8Lm + 16 m2 D] 4c4 – 12 c2d - 9 d2[/ltr] [ltr] E] 1 – a + a2 F] 4 + 36 a2 + 81 a6[/ltr] [ltr] [/ltr] [ltr]2] Complete the missing term in each of the following [/ltr] [ltr] trinomial to be a perfect square[/ltr] [ltr] A] 4a2 + ………… + 25 B] 9a2 - ……… + 36 [/ltr] [ltr] C] 4a2 + ……… + 36 b2 D] 36 x4 - ……… + 9y4[/ltr] [ltr] E] a2 – 6 a + ……… F] 4x2 +28x + …………[/ltr] [ltr] G] 4b2 – 4a b + ………… H] 25 m2 – 10 mn + ….[/ltr] [ltr] J] ………. – 36 y2 + 9 K] …… - 24 ab + 16 b2[/ltr] [ltr] L] x2 + ……… + y2 M] ……… -18y2 + 81[/ltr] [ltr]3] Choose the correct answer :[/ltr] [ltr] A] if the expression x2 + 14 x + B is a perfect square then [/ltr] [ltr] B= ……… ( 2 , 7 , 14 , 49 ) [/ltr] [ltr] B] if ( x + y ) 2 = 64 , xy = 15 then x2 + y2 = ……..[/ltr] [ltr] ( 8 , 34 , - 34 , 49 ) [/ltr] [ltr]C] if a2 + b2 = 11 , ab = 15 then a2-b2 = …………[/ltr] [ltr] ( 6a ,1 , 1 , - 1 )[/ltr] [ltr]D] (99)2 + 2( 99 ) + 1 = ………….( 100 ,10 000 , 410 , (98)2 )[/ltr] [ltr]E] if a2 +2ab +b2 = 25 then a + b = ……( 5 , -5 , 5, 12.5 ) [/ltr] [ltr]F] if x2 + Kx + 25 is a perfect square then K = ……[/ltr] [ltr] ( 5 , 10 , 10 , 5 ) [/ltr] [ltr]4] Factorize each of the following [/ltr] [ltr] A] x2 + 2x y + y2 B] a2-2 ab + b2 [/ltr] [ltr] C] 49 a2 – 56 a + 16 D] 4x2 – 20 x + 25 [/ltr] [ltr] E] 1 – 10 a2 + 25 a4 F] -4m2n2 + m4 + 4n4[/ltr] [ltr]5] Factorize each of the following[/ltr] [ltr] A] 2a2 + 28 a + 98 B] 3a2 – 6ab +3b2 [/ltr] [ltr] C] 8x2-4x4 -4 D] 12x2 + 36xy +27y2[/ltr] [ltr] E] a2 + a + F] x2 - x + [/ltr] [ltr] G] 4x2 – 7y ( 4x-7y ) H] 9a2 + 5b ( 5b – 6a ) [/ltr] [ltr]6] using factorization to find the value of [/ltr] [ltr] A] (20.7) 2 – 1.4 x 20.7 + ( 0. 7 )2 [/ltr] [ltr] B] ( 99 ) 2 –2(99) (98) + ( 98 ) 2 [/ltr] [ltr] [/ltr] [ltr]Factorization of the difference of two squares [/ltr] [ltr]We know that [/ltr][ltr] (x + 3 ) ( x – 3 ) = X2 – 9 [/ltr] [ltr] ( a+ b ) ( a-b) = a2 – b2 [/ltr] [ltr]Each of X2 – 9 and a2 – b2 are called difference between two squares and so on 25 x2 – 16 y2 and ( 75 ) 2 – ( 25)2[/ltr] [ltr] And the difference between two squares [/ltr] [ltr] = their sum x the difference between them[/ltr] [ltr]Examples[/ltr] [ltr]1] Factorize each of the following [/ltr][ltr] A] 49x2 - 25 = ( 7x + 5) ( 7x – 5 ) [/ltr] [ltr] B ] (2y-3) 2 - 1 = [ ( 2y -3 ) – 1 ] [ ( 2y -3 ) + 1 ] [/ltr] [ltr] C] 27 m3 – 48 mn6 H.C.f 3m [/ltr] [ltr] = 3m ( 9 m2 - 16 n6 ) [/ltr] [ltr] = 3m ( 3m – 4n3 ) (3m + 4 n3 ) [/ltr] [ltr] D] 81 x4 – 16 y4 = ( 9x2 + 4y2 ) (9x2- 4y2 ) [/ltr] [ltr] = (9x2 + 4y2 ) ( 3x-2y ) (3x+2y)[/ltr] [ltr]2] Factorize each of the following[/ltr] [ltr] A] x2 - 4 B] 16x2 – 9 [/ltr] [ltr] C] 49x2-64y2 D] 169x2 -144y2[/ltr] [ltr] E] x2 – 1 G] x4 – a 6 [/ltr] [ltr] H] y2 - j] - [/ltr] [ltr]3] Factorize each of the following[/ltr] [ltr] A] 2x2 – 50 B] 3y2 -27 [/ltr] [ltr] C] x3-x D] x3y – xy5 [/ltr] [ltr] E] x2(x+2y ) – y2 ( x+2y ) F] 4b2 (2a-b) -25a2(2a-b)[/ltr] [ltr]4] using factorization to find the value of each of the following[/ltr] [ltr] A] (33)2 – ( 23)2 B] (77)2 – ( 23)2[/ltr] [ltr] C] (8.27)2 – ( 1.23)2 D] 31 x 29 [/ltr] [ltr]5] if x2 –y2 = 20 , x + y = 10 Find x-y [/ltr] [ltr]6] if L – M = 9 , L + M = 15 then L2 – M2 = ………................................[/ltr] [ltr] [/ltr] [ltr]Factorization of sum and difference between two cubes [/ltr] [ltr] a 3 + b3 is called sum of two cubes and [/ltr][ltr] x3 – y3 is called difference between two cubes[/ltr] [ltr]Study the following table[/ltr] [ltr] [/ltr]
[ltr] [/ltr] [ltr] [/ltr] [ltr] [/ltr] [ltr] [/ltr] [ltr] [/ltr] [ltr]Examples [/ltr] [ltr]1 ] Factorize each of the following [/ltr][ltr]A] 8 x3 + 27 = ( 2x + 3 ) ( 4x2 -6x + 9 ) [/ltr] [ltr]B] 125 a3 – b6 = ( 5a – b2 ) ( 25a2 + 5ab2 + b4 ) [/ltr] [ltr]C] x3 + 343 y3 = ( x + 7y ) ( x2 – 7xy + 49y2 ) [/ltr] [ltr]D] 40 a3 + 135 b3 …………………… H.C.F is 5 [/ltr] [ltr] 5( 8a3 + 27b3) = 5( 2a + 3b )( 4a2 -6ab + 9b2) [/ltr] [ltr]E] x6 – 64y6 For excellent pupils !!!!!!!!!![/ltr] [ltr] [/ltr] [ltr]2] Factorize each of the following [/ltr] [ltr] A] x3 + 1 B] x3 - 8 [/ltr] [ltr]C] 125 + a3 D] 343 – 2 7 x3 [/ltr] [ltr]E] L3 - F] 8a3 + 0. 0 0 1 [/ltr] [ltr]G] 0 . 0 27 x3 + y3 H] y6 – 1 [/ltr] [ltr]I] x6 + y 6 J] a3 – 0 . 008 b3 [/ltr] [ltr]K] L] 27 x3y3 - 64[/ltr] [ltr]3] Factorize each of the following [/ltr] [ltr]A] 2x3 + 16 B] 3x3 – 81 [/ltr] [ltr]C] L4 – 27 L D] 16 x3 + 250 y3 [/ltr] [ltr]E] 216 a3 – 27 b3 F] 54 x4 y2 – 16 xy5[/ltr] [ltr]4] Complete [/ltr] [ltr]1) = ………… 2) = …………[/ltr] [ltr]3) 27 m3 = ( ……… ) 3 4) 343 x3 y6 = ( …………… ) 3[/ltr] [ltr]5) x3 – 1 = ( x -1 ) ( …………………) [/ltr] [ltr]6 ) 8 a3 + 125 = ( …………… ) ( 4a2 - 10 a + ……… ) [/ltr] [ltr]5] if x3 – y 3 = 28 , x - y = 2 Find [/ltr] [ltr] The value of x2 + xy + y2 [/ltr] [ltr]6] Choose the correct answer [/ltr] [ltr]1) if x – y = 2 , x2 + xy + y2 = 4 then x3 – y3 = ………….[/ltr] [ltr] A ) 2 b) 4 c) 6 d) 8 [/ltr] [ltr]2) if a3 + b3 = 35 , a2 –ab + b2 = 7 then a + b = …………[/ltr] [ltr]A ) 5 b) 28 c) 42 d) 245[/ltr] [ltr]3) if y3 – a = ( y – 2 ) ( y2 + 2y + 4 ) then a = …………[/ltr] [ltr]A ) 2 b) 4 c) -8 d) 8 [/ltr] [ltr]4) if x3 – 8 = ( x + a ) ( x2 + 2x + 4 ) then a = ………….[/ltr] [ltr]A ) -4 b) 4 c) 26 d) -2[/ltr] [ltr]5) ( x3 – 64 ) ÷ ( x- 4 ) = …………………… where x 4 [/ltr] [ltr]A ) x2 + 16 b) x2 – 16 c) x2- 4x +16 d) x2 + 4x + 16[/ltr] [ltr] [/ltr] [ltr] [/ltr] [ltr]Factorization by grouping[/ltr] [ltr]In this case the expression consisting of four terms is factorized by group each two terms which have a common factor.[/ltr] [ltr]Solved example [/ltr][ltr]1) Factorize 2a3 + 5a2 + 8a + 20 [/ltr] [ltr] = (2a3+ 5a2 ) + ( 8a + 20 ) [/ltr] [ltr] = a2 ( 2a + 5 ) + 4 ( 2a + 5 ) [/ltr] [ltr] = ( 2a + 5 ) ( a2 + 4 ) [/ltr] [ltr]2) Factorize x3 – 3 x2 – 5x + 15 [/ltr] [ltr] = ( x3 – 3 x2 ) + ( 15 – 5x ) [/ltr] [ltr] = x2 ( x – 3 ) + 5 ( 3 – x ) [/ltr] [ltr] = x2 ( x – 3 ) – 5 ( x – 3 ) [/ltr] [ltr] = ( x – 3 ) ( x2 – 5 ) [/ltr] [ltr]3 ) Factorize 16 x2 – a2 + 6ab – 9 b 2 [/ltr] [ltr] We note that there is no common factor between the [/ltr] [ltr] first term and the other terms so we can group as [/ltr] [ltr] 16 x2 + (– a2 + 6ab – 9 b 2 ) ( 16 x2-(- a2 - 6ab +9 b 2 ) [/ltr] [ltr] 16 x2 – ( a – 3b ) 2 difference between two squares[/ltr] [ltr] ( 4x – ( a -3 b ) ) ( 4x + ( a -3 b ))[/ltr] [ltr] ( 4x –a + 3b ) ( 4x + a -3 b ) [/ltr] [ltr]Exercise[/ltr] [ltr]1] Factorize each of the following completely [/ltr][ltr] A] ab + ac + b + c B] ax – cy – cx + a y [/ltr] [ltr] C] 2ab – 10 a + 3b – 15 D] ab + 5b + 7a + 35 [/ltr] [ltr] E] 5 L - 10 m – al + 2 am F] x3 – 3x2 + 6 x - 18 [/ltr] [ltr]2] Factorize each of the following completely [/ltr] [ltr] A] y3 + 2 y 2 – y – 2 B] x5 – x3 – x2 + 1 [/ltr] [ltr] C] 30 x2y2 – 3 x y + 6x2y – 15 xy2[/ltr] [ltr] D] a3 + b3 – a – b E] abx2 + b x – a x – 1 [/ltr] [ltr] F] 8mn – 2 m2 + 12 n L – 3mL [/ltr] الموضوعالأصلي : احلى ملزمه فى math alg factorization // المصدر : ممنتديات جواهر ستار التعليمية //الكاتب: berber
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||
الأربعاء 20 أغسطس - 0:40:57 | المشاركة رقم: | |||||||
Admin
| موضوع: رد: احلى ملزمه فى math alg factorization احلى ملزمه فى math alg factorization Summery of the factorization The expression 1- Taking H.C.F ab + ac = a ( b + c ) 6x2y + 10 xy2 = 2xy ( 3x + 5y ) 2a ( x + y ) – b ( x + y ) = ( x + y ) ( 2a – b ) 2- Difference between two squares a2 - b2 = ( a+b) ( a-b) X2 – 9 = ( x+3) ( x – 3 ) 2x3 – 72x = 2x ( x2-36) = 2x ( x + 6 ) ( x – 6 ) 3- Sum of two cubes a3+ b3 = ( a+b ) ( a-ab+b2) Difference between two cubes a3-b3 = ( a-b) ( a + ab –b2) X3 + 8 = ( x + 2 ) (x2 – 2x + 4 ) X6 – 64y6 = ( x3 + 8y3) ( x3 – 8y3) = ( x + 2 y ) ( x2 – 2xy + 4 y2) X ( x – 2y ) ( x2 + 2xy +4y2 ) 4- The perfect square trinomial a2 + 2ab + b2 X2 + 10 x +25 = ( x + 5 ) 2 The trinomial in the form of x2 + bx + c X2 + 7x + 12 = ( x +3 ) ( x + 4 ) 18 x – 15x2 + 3 x3 = 3x3 -15x2+ 18x order = 3x ( x2 – 5x + 6 ) H.C.F = 3x ( x -2 ) ( x -3 ) 5- Factorizing by grouping Ax + ay + b x +by = a ( x + y ) + b ( x + y ) = ( x + y ) ( a + b ) X2 – 2 x y + y2 – 9 = x 2 – 2 x y + y2 ) - 9 = (x – y )2 - 9 = ( x – y + 3 ) ( x – y – 3 ) Solving an equation of the second degree in one variable algebraically Find the solution set of x ( x – 1 ) = 0 Either x = 0 Or x -1 = 0 x = 1 S.S = { 0 , 1 } Find S.S of x( x+1 ) ( x – 1 ) = 0 Either x = 0 or x + 1 = 0 or x – 1 = 0 x = -1 x = 1 the S.S = { 0 , 1 , - 1 } Find the S.S of ( x2 – 4 ) ( x2 +1) Either x2 – 4 = 0 or x2 + 1 = 0 x = 2 x2 = -1 has no root the S.S = { 2 , - 2} Find in Q the S.S of each of the following equations 1] x2 – 9 = 0 First we should factorize the L.H.S ( x + 3 ) ( x – 3 ) = 0 then either x + 3 = 0 or x-3 = 0 x = -3 x = 3 The S.S = { 3 , - 3 } 2] x2 + 8 x + 12 =0 (x + 6 ) ( x + 2 ) = 0 either x + 6 = 0 or x + 2 = 0 x = -6 x = -2 The S.S = { - 6 , - 2 } Exercises 1] Find in Q the S.S of each of the following equations 1) x2 – 4x -21 = 0 2) x2 + 4 x + 4 = 0 3) 2x2 + 2x – 35 = 0 4) 9x2 – 6 x + 1 = 0 5) x2 - 7x – 30 = 0 2] Find in Q the S.S of each of the following equations 1) x2 = x 2) 3x2 = 7x 3) 4x2 = 49 4) x2 – x = 6 5) 4x3 = 9 x 6) 6x2 –x = 22 3] Find in Q the S.S of each of the following equations 1) x ( x – 5 ) + 6 = 0 2) x ( x + 3 ) -18 =0 3) ( x + 8 ) ( x – 3 ) = 3 x 4) ( x + 3 ) 2 – 49 = 0 5) 5 ( x2 + 3 ) = 6 0 6) 4( x+4)2 = 49 Word problems of solving quadratic equations Firstly you should understand the following table IF Then The number = x • Its half = x or • Its third = x or • Its double ( twice ) = 2 x • Its three times = 3 x • Its square = x2 • Double its square = 2x2 • Square its double = (2x)2 = 4x2 • Its additive inverse = - x • Its multiplicative inverse = Three consecutive numbers • The 1st no is x • The 2nd is x + 1 and the 3rd is x +2 Three consecutive even ( odd ) numbers • The 1st no is x • The 2nd is x + 12 and the 3rd is x +4 Two numbers the ratio between them is 2 : 3 • The 1st no is 2 x and • the 2nd no is 3x Square its side length is x cm • Its perimeter = 4 x cm • Its area = x2 cm2 Rectangle its length exceeds than its width by 5 cm • The width = x and the length = x +5 • Its perimeter = ( x + x + 5 ) x 2 • Its area = x ( x + 5 ) A man his age now is x years • His age after 4years is x + 4 • His age 4 years ago = x – 4 Two numbers one of them more than the other by 5 • The 1st is x • the second is x + 5 or x – 5 think why ? Two numbers one of them greater than twice the second by 5 • the 1st is x • The 2nd is 2 x + 5 Solved problems 1] two real numbers one of them increase than the other by 4 If the product of the two numbers is - 45 . what is the two numbers ? let the smallest number is x then the other is x + 4 x ( x + 4 ) = 45 equation x2 + 4 x - 45 = 0 ( x + 9 ) ( x – 5 ) = 0 then either x + 9 = 0 x = - 9 or x – 5 = 0 x = 5 2] if Hatem’s age now exceeds Hanan’s age by 4 years , and the sum of the squares of their ages now is 26 years . Calculate the age of each . Let Hanan ‘sage is x then Hatem’s age is x + 4 then her square is x2 then his square ( x + 4 ) 2 x2 + ( x+4)2=26 x2 + x2+8x+16=26 2x2 + 8x +16-26 = 0 2x2 + 8x -10 = 0 2( x2 + 4x -5 ) =0 x2 +4x -5 = 0 (x+5 ) ( x-1) = 0 3] apiece of land in a rectangular shape its length increase Its width by 5 m . if its area is 500m2 Find its dimensions . Solution Let the width is x then its length is x + 5 Area of the rectangle = L x W 500 = ( x + 5 ) x 500 = x2 +5x x2 + 5x = 500 x2 + 5x -500 = 0 ( x + 25 ) ( x – 20 ) = 0 Either x + 25 = 0 then x = - 25 refused Or x - 20 = 0 then x = 20 The widths = 20 cm then the length = 20+5 =25 cm 4] a real number exceeds than its multiplicative inverse by What is the number ? Solution Let the number is x then its multiplicative inverse is x - = by multiply both sides by 6x why ? discuss 6x (x - ) = 6x ( ) 6x2 – 6 = 5 x 6x2 – 5 x - 6 = 0 ( 2x – 3 ) ( 3x + 2 )=0 Either 2x – 3 = 0 then 2x = 3 then x = or 3x + 2 = 0 then 3x = -2 then x = then the number = or Exercises on word problems of Solving quadratic equation 1] Find the rational number whose four times its square is 81 ……………………………………………………………………………………………………… ……………………………………………………………………………………………………… 2] a positive whole number , if its square is added to its three times then the result will be 10 . what is the number ? ……………………………………………………………………………………………………… ……………………………………………………………………………………………………… 3] Find the number which if its added to its square , the result will be 24 . ……………………………………………………………………………………………………… ……………………………………………………………………………………………………… 4] two consecutive positive odd numbers , the sum of their squares is 650 what are the two numbers ? ……………………………………………………………………………………………………… ……………………………………………………………………………………………………… 5] Ali’s age is 4 years more than Omar’s age if the sum of the squares of their ages is 136 . what is the age of each ? ……………………………………………………………………………………………………… ……………………………………………………………………………………………………… 6] the length of a rectangle is 2 cm more than its width . if its area is 360cm2 find its perimeter . ……………………………………………………………………………………………………… ……………………………………………………………………………………………………… 7] ABC is a triangle in which m A =( x2 +61 ) ه , m B =(110 -11x) ه m C= ( 90 – 7x ) ه find the value of x then calculate the measures of the angles of the triangle . ……………………………………………………………………………………………………… ……………………………………………………………………………………………………… ……………………………………………………………………………………………………… ……………………………………………………………………………………………………… General exercises from the school book 1] Factorize each of the following A) x4 – 16 y4 B) 2x5 + 54 x2 C) a4 + 4b 4 D) x6 – 64y6 E)8x3 -125 F) 3x3+2x2+12x+8 2] Factorize each of the following A)8 x2 -2xy – y2 B) L3m -27m4 C)625 a2 -81b2 D) 2(x +3y)3-250 E) (c – d ) + 2x ) c – d ) + x2 (c-d ) F) 7x2 -29xy+30y2 3] Find the value of C that makes the expression can be factrizable . then factorize it . where C Z A)x2 + C x -15 B) x2 -7x + C C) y2 –C y +29 D) a2 + a - C E) C x2 + x – 15 F) Cx2 -13x + 6 4] Factorize each of the following A) 9x2 – 30 x + 25 B) 18ab4- 114b2c2a + 128ac2 C) x2 – 4xy + x – 2y + 4 y2 D) x2 – 2xy + y2 - 4H2 5] Find the S.S in R for each of the following equations A) x 2 + x = 6 B) 3x2 + 2x = 85 C) (x – 1 )2 + x = 3 D) 2x3 = 7 x 6] three consecutive integer numbers their sum is the square of the middle number . find these numbers ? 7] In the opposite figure { c } If m BCD = x2 , m ACD = 8x Find the value of x Unit test School book 1] Choose the correct answer A) the expression 4x2 + k + 25 y2 is a perfect square when K = ……… ( 20 , 10 xy , 20 xy , 30 xy ) B) if x 2 - y2 = 16 , x + y = 8 then x – y = ……… ( 2 , 1 , 128 , 6 4 ) C) if x + y = 3 , x 2 – xy + y2 = 5 then x 2 + y 2 = …………… ( 15 , 25 , 8 , 7 ) D) the expression 4 x2 + 12 x + a is a perfect square when a= ( 6 , 16 , 1 , 9 ) E) if ( 2a -5 ) ( 3a -2 ) = 6a2 + ka + 10 then k = ………… ( 15 , 19 , -19 , 4 ) 2] Complete A] ( 4 a – 5 b ) ( ……… - 3 b ) = 8 a2 ………… + 15 b2 B) if x2 + y2 = 17 , xy = 7 then ( x-y) 2 = ………… C) if k x2 – 10 x + 1 is a perfect square then k = ……… D) if ( x + 1 ) is one of the factors of 5 x2 - 2x – 7 then The other factor is ………………… E) x3 + 8 = ( x + 2 ) ( …………………… ) 3] Factorize each of the following A) ( x + 2 ) 3 – 4 x -8 B) a2+2ab +b2-c2 C) 2x2 – 5x + 3 D) x4 +4 L4 E) 8x3 – 343 y6 4] Find the S.S of each of the following equations A) x2 – 3x -10 B) 3x2 + x = 14 C) ( 2x-1)2+(x-1)2=10 5] By using the factorization find the value of each A) B) ( 8.175)2 - ( 1 .825 ) 2 C) (87)2 + 2 x 13 x 87 + (13)2 6] a right angled triangle the length of the sides of the right angle are 4x , x + 1 , if its area is 84 cm2 . find the length of the hypotenuse . الموضوعالأصلي : احلى ملزمه فى math alg factorization // المصدر : ممنتديات جواهر ستار التعليمية //الكاتب: berber
| |||||||
الأربعاء 20 أغسطس - 0:44:21 | المشاركة رقم: | |||||||
Admin
| موضوع: رد: احلى ملزمه فى math alg factorization احلى ملزمه فى math alg factorization 1] Factorize each of the following a) x2 + 8 x + 15 ………………………………………………………………………………………… b) a2 – 9 a + 18 ………………………………………………………………………………………… c) a2- a - 30 ………………………………………………………………………………………… d) a2 + 30 a + 81 ………………………………………………………………………………………… e) y2 + 7 y + 1 2 ………………………………………………………………………………………… 2] Factorize each of the following 1) x2 + 5 xy + 6y2 ……………………………………………………………………… 2) y2 + 16 yx – 36 y2 ……………………………………………………………………… 3) a2 + 22 ab – 48 b2 ……………………………………………………………………… 4) n2 + 4 nm – 45 m2 ……………………………………………………………………… 5) x2 – 7 xy – 18 y2 ……………………………………………………………………… 6) x2 – 5xy - 24 y2 …………………………………………………………………………… 3] Factorize each of the following 1) 15 a + a2 – 34 ………………………………………………………………………………… 2) -10 + x2 + 3x …………………………………………………………………………… 3) 22 x - 7 5 + x2 …………………………………………………………………………………… 4) x2 + 21 – 10 x ……………………………………………………………………………… 4] Factorize each of the following 1) 2 a2 + 28 a +96 ………………………………………………………………………………………… 2) 2x2 + 60 x + 162 ………………………………………………………………………… 3) x3 – 23 x2 + 60 x ……………………………………………………………………………… 4) 3x2 – 42 – 15 x ………………………………………………………………………………… 5] Factorize each of the following 1) x4 + 9 x2 – 36 ………………………………………………………………………………………… 2) x6 + 8x3y3 – 180 y6 ………………………………………………………………………………………… 3) a10 – 9a5b3 – 220 b6 ……………………………………………………………………………………… 6] Find the positive integer of a which makes each of the following Expressions factorizable 1) x2 + 5x + a 2) x2 + a x - 2 ………………………. ……………………….. 3) x2 + ax + 2 4) x2 – a x + 12 ……………………… …………………….. الموضوعالأصلي : احلى ملزمه فى math alg factorization // المصدر : ممنتديات جواهر ستار التعليمية //الكاتب: berber
| |||||||
الثلاثاء 2 سبتمبر - 20:10:33 | المشاركة رقم: | |||||||
عضو نشيط
| موضوع: رد: احلى ملزمه فى math alg factorization احلى ملزمه فى math alg factorization شكرا يبا ياغالي علي الموضوع الموضوعالأصلي : احلى ملزمه فى math alg factorization // المصدر : ممنتديات جواهر ستار التعليمية //الكاتب: wassim25
| |||||||
الإشارات المرجعية |
الذين يشاهدون محتوى الموضوع الآن : 20 ( الأعضاء 3 والزوار 17) | |
|
| |
أعلانات نصية | |
قوانين المنتدى | |
إعــــــــــلان | إعــــــــــلان | إعــــــــــلان | إعــــــــــلان |